Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.08.25.23294626

ABSTRACT

Background: We sought to determine immune and behavioral pre-infection correlates of protection against SARS-CoV-2 post-vaccine infections in a joint analysis of epidemiological and immunological cohort data. Methods: Serum and saliva samples from 176 BNT162b2-vaccinated adults in the Prospective Assessment of SARS-CoV-2 Seroconversion study were collected between October and December 2021 and assessed for serum and saliva levels of Wuhan-1 wild-type (WT) SARS-CoV-2 Spike (S)-specific IgG and IgA binding antibodies (bAb) using a multiplex microsphere-based immunoassay (MMIA). Serum samples were also assessed for WT receptor binding domain (RBD)-specific bAb by two commercial assays, BA.1 S-specific IgG bAb by MMIA, and neutralization activity against D614G, Delta (B.1.617.2), and Omicron BA.1 and BA.1.1 variants using a lentiviral pseudovirus neutralization assay. After the Fall 2021 visit, participants reported all positive PCR and/or antigen tests for SARS-CoV-2. Duration, severity, and type of symptoms, as well as risk exposures and adherence to precautionary measures, were assessed by questionnaires during the Spring 2022 visit. Results: Thirty-two participants (18.2%) developed symptomatic post-vaccination SARS-CoV-2 infections (PVI) between December 7, 2021 and April 1, 2022. Pre-infection WT (geometric mean (GM) of 3,863 vs 2,736 binding antibody unit [BAU]/ml, uninfected vs PVI, p=0.0098) and BA.1 (GM of 276.9 vs 179.9 arbitrary bAb unit [AU]/ml, uninfected vs PVI, p=0.04) anti-S IgG bAb levels measured by MMIA and neutralizing titers (NT) against BA.1 (GM titer [GMT] of 493.6 vs 286.2, uninfected vs PVI, p=0.0313) and BA.1.1 (GMT of 552.0 vs 302.5, uninfected vs PVI, p=0.021) were significantly higher in individuals that did not develop PVIs. WT anti-S bAb levels greater than 5,000 BAU/ml were associated with > 90% protection against symptomatic PVI. In individuals that developed PVI, WT anti-S IgG bAb levels correlated with lower disease severity scores ({rho}= -0.3859, p=0.032) and shorter duration of clinical disease ({rho}= -0.5273, p=0.0023). WT anti-RBD bAb levels measured by commercial assays correlated strongly with bAb levels measured by MMIA ({rho}=0.8239, p<0.0001 and {rho}=0.6929, p<0.0001, Roche and Siemens assays, respectively), but did not reach statistical significance for correlation with protection against PVI. Home risk score, but neither work nor home precautionary measures, correlated strongly with risk of PVI (mean score of 20.77 vs 47.33, uninfected vs PVI respectively, p<0.0001). Conclusions: Anti-S IgG bAb levels (directed against either WT or Omicron BA.1 subvariant) and NTs served as correlates of protection against symptomatic SARS-CoV-2 infection. Anti-S (WT) IgG bAb levels remained a significant correlate of protection against PVIs when adjusting for demography and risk behavior. Results of this study also suggest that commercial assays for anti-S bAb may need to be reformatted to enable detection of higher maximum values for use as predictors of increased susceptibility to SARS-CoV-2 infection.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.07.05.498883

ABSTRACT

The rapid emergence of new SARS-CoV-2 variants challenges vaccination strategies. Here, we measured antigenic diversity among variants and interpreted neutralizing antibody responses following single and multiple exposures in longitudinal infection and vaccine cohorts. Antigenic cartography using primary infection antisera showed that BA.2, BA.4/BA.5, and BA.2.12.1 are distinct from BA.1 and closer to the Beta cluster. Three doses of an mRNA COVID-19 vaccine increased breadth to BA.1 more than to BA.4/BA.5 or BA.2.12.1. Omicron BA.1 post-vaccination infection elicited antibody landscapes characterized by broader immunity across antigenic space than three doses alone, although with less breadth than expected to BA.2.12.1 and BA.4/BA.5. Those with Omicron BA.1 infection after two or three vaccinations had similar neutralizing titer magnitude and antigenic breadth. Accounting for antigenic differences among variants of concern when interpreting neutralizing antibody titers aids understanding of complex patterns in humoral immunity and informs selection of future COVID-19 vaccine strains.


Subject(s)
Infections , Ossification of Posterior Longitudinal Ligament , COVID-19
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.06.01.494385

ABSTRACT

The SARS-CoV-2 Omicron variants were first detected in November 2021, and several Omicron lineages (BA.1, BA.2, BA.3, BA.4, and BA.5) have since rapidly emerged. Studies characterizing the mechanisms of Omicron variant infection and sensitivity to neutralizing antibodies induced upon vaccination are ongoing by several groups. In the present study, we used pseudoviruses to show that the transmembrane serine protease 2 (TMPRSS2) enhances infection of BA.1, BA.1.1, BA.2, and BA.3 Omicron variants to lesser extent compared to ancestral D614G. We further show that Omicron variants have higher sensitivity to inhibition by soluble angiotensin converting enzyme 2 (ACE2) and the endosomal inhibitor chloroquine compared to D614G. The Omicron variants also more efficiently used ACE2 receptors from nine out of ten animal species tested, and unlike the D614G variant, used mouse ACE2 due to the Q493R and Q498R spike substitutions. Finally, neutralization of the Omicron variants by antibodies induced by three doses of Pfizer/BNT162b2 mRNA vaccine was 7-8-fold less potent than the D614G, and the Omicron variants still evade neutralization more efficiently.

4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.22.473880

ABSTRACT

The rapid spread of the highly contagious Omicron variant of SARS-CoV-2 along with its high number of mutations in the spike gene has raised alarm about the effectiveness of current medical countermeasures. To address this concern, we measured neutralizing antibodies against Omicron in three important settings: (1) post-vaccination sera after two and three immunizations with the Pfizer/BNT162b2 vaccine, (2) convalescent sera from unvaccinated individuals infected by different variants, and (3) clinical-stage therapeutic antibodies. Using a pseudovirus neutralization assay, we found that titers against Omicron were low or undetectable after two immunizations and in most convalescent sera. A booster vaccination significantly increased titers against Omicron to levels comparable to those seen against the ancestral (D614G) variant after two immunizations. Neither age nor sex were associated with differences in post-vaccination antibody responses. Only three of 24 therapeutic antibodies tested retained their full potency against Omicron and high-level resistance was seen against fifteen. These findings underscore the potential benefit of booster mRNA vaccines for protection against Omicron and the need for additional therapeutic antibodies that are more robust to highly mutated variants. One Sentence Summary Third dose of Pfizer/BioNTech COVID-19 vaccine significantly boosts neutralizing antibodies to the Omicron variant compared to a second dose, while neutralization of Omicron by convalescent sera, two-dose vaccine-elicited sera, or therapeutic antibodies is variable and often low.


Subject(s)
COVID-19
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.11.05.467523

ABSTRACT

The SARS-CoV-2 B.1.617 lineage variants, Kappa (B.1.617.1) and Delta (B.1.617.2, AY) emerged during the second wave of infections in India, but the Delta variants have become dominant worldwide and continue to evolve. The spike proteins of B.1.617.1, B.1.617.2, and AY.1 variants have several substitutions in the receptor binding domain (RBD), including L452R+E484Q, L452R+T478K, and K417N+L452R+T478K, respectively, that could potentially reduce effectiveness of therapeutic antibodies and current vaccines. Here we compared B.1.617 variants, and their single and double RBD substitutions for resistance to neutralization by convalescent sera, mRNA vaccine-elicited sera, and therapeutic neutralizing antibodies using a pseudovirus neutralization assay. Pseudoviruses with the B.1.617.1, B.1.617.2, and AY.1 spike showed a modest 1.5 to 4.4-fold reduction in neutralization titer by convalescent sera and vaccine-elicited sera. In comparison, similar modest reductions were also observed for pseudoviruses with C.37, P.1, R.1, and B.1.526 spikes, but seven- and sixteen-fold reduction for vaccine-elicited and convalescent sera, respectively, was seen for pseudoviruses with the B.1.351 spike. Four of twenty-three therapeutic neutralizing antibodies showed either complete or partial loss of neutralization against B.1.617.2 pseudoviruses due to the L452R substitution, whereas six of twenty-three therapeutic neutralizing antibodies showed either complete or partial loss of neutralization against B.1.617.1 pseudoviruses due to either the E484Q or L452R substitution. Against AY.1 pseudoviruses, the L452R and K417N substitutions accounted for the loss of neutralization by four antibodies and one antibody, respectively, whereas one antibody lost potency that could not be fully accounted for by a single RBD substitution. The modest resistance of B.1.617 variants to vaccine-elicited sera suggest that current mRNA-based vaccines will likely remain effective in protecting against B.1.617 variants, but the therapeutic antibodies need to be carefully selected based on their resistance profiles. Finally, the spike proteins of B.1.617 variants are more efficiently cleaved due to the P681R substitution, and the spike of Delta variants exhibited greater sensitivity to soluble ACE2 neutralization, as well as fusogenic activity, which may contribute to enhanced spread of Delta variants.

6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.16.21265087

ABSTRACT

Antibodies against SARS-CoV-2 decay but persist six months post-vaccination, with lower levels of neutralizing titers against Delta than wild-type. Only 2 of 227 vaccinated healthcare workers experienced outpatient symptomatic breakthrough infections despite 59 of 227 exhibiting serological evidence of exposure to SARS-CoV-2 as defined by development of anti-nucleocapsid protein antibodies.


Subject(s)
COVID-19 , Breakthrough Pain
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.13.21264968

ABSTRACT

Background: Emergency Departments (EDs) can serve as surveillance sites for infectious diseases. Our purpose was to determine the burden of SARS-CoV-2 infection and prevalence of vaccination against COVID-19 among patients attending an urban ED in Baltimore City. Methods: Using 1914 samples of known exposure status, we developed an algorithm to differentiate previously infected, vaccinated, and unexposed individuals using a combination of antibody assays. We applied this testing algorithm to 4360 samples ED patients obtained in the springs of 2020 and 2021. Using multinomial logistic regression, we determined factors associated with infection and vaccination. Results: For the algorithm, sensitivity and specificity for identifying vaccinated individuals was 100% and 99%, respectively, and 84% and 100% for naturally infected individuals. Among the ED subjects, seroprevalence to SARS-CoV-2 increased from 2% to 24% between April 2020 and March 2021. Vaccination prevalence rose to 11% by mid-March 2021. Marked differences in burden of disease and vaccination coverage were seen by sex, race, and ethnicity. Hispanic patients, though 7% of the study population, had the highest relative burden of disease (16 % of total infections) but similar vaccination rates. Women and White individuals were more likely to be vaccinated than men or Black individuals (adjusted odds ratios aOR 1.35 [95% CI: 1.02, 1.80] and aOR 2.26 [95% CI: 1.67, 3.07], respectively). Conclusions: Individuals previously infected with SARS-CoV-2 can be differentiated from vaccinated individuals using a serologic testing algorithm. SARS-CoV-2 exposure and vaccination uptake frequencies reflect gender, race and ethnic health disparities in this urban context.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Communicable Diseases
8.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-72427.v1

ABSTRACT

In March 2020, COVID-19 infections began to rise exponentially in the United States, placing substantial burden on the healthcare system. As a result, there was a rapid change in transplant practices and policies, with cessation of most procedures. Our goal was to understand changes to pediatric kidney transplantation (KT) at the national level during the COVID-19 epidemic. Using SRTR data, we examined changes in pediatric waitlist registration, waitlist removal or inactivation, and deceased donor and living donor (DDKT/LDKT) events during the start of the disease transmission in the United States compared to the same time the previous year. We saw an initial decrease in DDKT and LDKT by 47% and 82% compared to expected events and then a continual increase, with numbers reaching expected pre-pandemic levels by May 2020. In the early phase of the pandemic, waitlist inactivation and removals due to death or deteriorating condition rose above expected values by 152% and 189%, respectively. There was a statistically significant decrease in new waitlist additions (IRR 0.49 0.65 0.85) and LDKT (IRR 0.17 0.38 0.84) in states with high vs low COVID activity. Transplant recipients during the pandemic were more likely to have received a DDKT, but had similar cPRA, waitlist time and cause of ESRD as before the pandemic. The COVID-19 pandemic initially reduced access to kidney transplantation among pediatric patients in the United States, but has not had a sustained effect.


Subject(s)
COVID-19 , Kidney Failure, Chronic , Death
9.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.27.20114090

ABSTRACT

Background: Following early implementation of public health measures, San Francisco has experienced a slow rise and a low peak level of coronavirus disease 2019 (COVID-19) cases and deaths. Methods and Findings: We included all patients with COVID-19 pneumonia admitted to the intensive care unit (ICU) at the safety net hospital for San Francisco through April 8, 2020. Each patient had [≥]15 days of follow-up. Among 26 patients, the median age was 54 years (interquartile range, 43 to 62), 65% were men, and 77% were Latinx. Mechanical ventilation was initiated for 11 (42%) patients within 24 hours of ICU admission and 20 patients (77%) overall. The median duration of mechanical ventilation was 13.5 days (interquartile range, 5 to 20). Patients were managed with lung protective ventilation (tidal volume <8 ml/kg of ideal body weight and plateau pressure [≤]30 cmH2O on 98% and 78% of ventilator days, respectively). Prone positioning was used for 13 of 20 (65%) ventilated patients for a median of 5 days (interquartile range, 2 to 10). Seventeen (65%) patients were discharged home, 1 (4%) was discharged to nursing home, 3 (12%) were discharged from the ICU, and 2 (8%) remain intubated in the ICU at the time of this report. Three (12%) patients have died. Conclusions: Good outcomes were achieved in critically ill patients with COVID-19 by using standard therapies for acute respiratory distress syndrome (ARDS) such as lung protective ventilation and prone positioning. Ensuring hospitals can deliver sustained high-quality and evidence-based critical care to patients with ARDS should remain a priority.


Subject(s)
Respiratory Distress Syndrome , Pneumonia , Death , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL